Saturday, April 4, 2009

Although the 9×9 grid with 3×3 regions is by far the most common, variations abound. Sample puzzles can be 4×4 grids with 2×2 regions; 5×5 grids with pentomino regions have been published under the name Logi-5; the World Puzzle Championship has featured a 6×6 grid with 2×3 regions and a 7×7 grid with six heptomino regions and a disjoint region. Larger grids are also possible. The Times offers a 12×12-grid Dodeka sudoku with 12 regions of 4×3 squares. Dell regularly publishes 16×16 Number Place Challenger puzzles (the 16×16 variant often uses 1 through G rather than the 0 through F used in hexadecimal). Nikoli offers 25×25 Sudoku the Giant behemoths.
Another common variant is to add limits on the placement of numbers beyond the usual row, column, and box requirements. Often the limit takes the form of an extra "dimension"; the most common is to require the numbers in the main diagonals of the grid also to be unique. The aforementioned Number Place Challenger puzzles are all of this variant, as are the Sudoku X puzzles in the Daily Mail, which use 6×6 grids.
A variant named "Mini Sudoku" appears in the American newspaper USA Today, which is played on a 6x6 grid with 3x2 regions. The object is the same as standard Sudoku, but the puzzle only uses the numbers 1 through 6.
Another variant is the combination of Sudoku with Kakuro on a 9 x 9 grid, called Cross Sums Sudoku, in which clues are given in terms of cross sums. The clues can also be given by cryptic alphametics in which each letter represents a single digit from 0 to 9. An excellent example is NUMBER+NUMBER=KAKURO which has a unique solution 186925+186925=373850. Another example is SUDOKU=IS*FUNNY whose solution is 426972=34*12558.
Killer Sudoku combines elements of Sudoku with Kakuro - usually no initial numbers are given, but the 9*9 grid is divided into regions, each with a number that the sum of all numbers in the region must add up to, with no repeated numerals. These must be filled in while obeying the standard rules of Sudoku.

Hypersudoku puzzle. As seen in The Age.

Solution to Hypersudoku puzzle.
Hypersudoku is one of the most popular variants. It is published by news papers and magazines around the world and is also known as "NRC Sudoku", "Windoku", "Hyper-Sudoku" and "4 Square Sudoku". The layout is identical to a normal Sudoku, but with additional interior areas defined in which the numbers 1 to 9 must appear. The solving algorithm is slightly different from the normal Sudoku puzzles because of the leverage on the overlapping squares. This overlap gives the player more information to logically reduce the possibilities in the remaining squares. The approach to playing is still similar to Sudoku but with possibly more emphasis on scanning the squares and overlap rather than columns and rows.
Puzzles constructed from multiple Sudoku grids are common. Five 9×9 grids which overlap at the corner regions in the shape of a quincunx is known in Japan as Gattai 5 (five merged) Sudoku. In The Times, The Age and The Sydney Morning Herald this form of puzzle is known as Samurai SuDoku. The Baltimore Sun and the Toronto Star publish a puzzle of this variant (titled High Five) in their Sunday edition. Often, no givens are to be found in overlapping regions. Sequential grids, as opposed to overlapping, are also published, with values in specific locations in grids needing to be transferred to others.
Alphabetical variations have emerged; there is no functional difference in the puzzle unless the letters spell something. Some variants, such as in the TV Guide, include a word reading along a main diagonal, row, or column once solved; determining the word in advance can be viewed as a solving aid.
A tabletop version of Sudoku can be played with a standard 81-card Set deck (see Set game). A three-dimensional Sudoku puzzle was invented by Dion Church and published in the Daily Telegraph in May 2005. There is a Sudoku version of the Rubik's Cube named Sudoku Cube.
The 2005 U.S. Puzzle Championship included a variant called Digital Number Place: rather than givens, most cells contain a partial given—a segment of a number, with the numbers drawn as if part of a seven-segment display. This version has also appeared in GAMES magazine.
One more variant of Sudoku is Greater Than Sudoku (GT Sudoku). In this a 3x3 grid of the Sudoku is given with 12 symbols of Greater Than (>) or Less Than (<) on the common line of the two adjacent numbers. Depending on difficulty this type of Sudoku may or may not be given with numbers.

No comments:

Post a Comment